A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast.
نویسندگان
چکیده
The chromodomain is a conserved motif that functions in the epigenetic control of gene expression. Here, we report the functional characterization of a chromodomain protein, Chp1, in the heterochromatin assembly in fission yeast. We show that Chp1 is a structural component of three heterochromatic regions-centromeres, the mating-type region, and telomeres-and that its localization in these regions is dependent on the histone methyltransferase Clr4. Although deletion of the chp1(+) gene causes centromere-specific decreases in Swi6 localization and histone H3-K9 methylation, we show that the role of Chp1 is not exclusive to the centromeres. We found that some methylation persists in native centromeric regions in the absence of Chp1, which is also true for the mating-type region and telomeres, and determined that Swi6 and Chp2 are critical to maintaining this residual methylation. We also show that Chp1 participates in the establishment of repressive chromatin in all three chromosomal regions. These results suggest that different heterochromatic regions share common structural properties, and that centromeric heterochromatin requires Chp1-mediated establishment steps differently than do other heterochromatic regions.
منابع مشابه
High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin.
In fission yeast, assembly of centromeric heterochromatin requires the RITS complex, which consists of Ago1, Tas3, Chp1, and siRNAs derived from centromeric repeats. Recruitment of RITS to centromeres has been proposed to depend on siRNA-dependent targeting of Ago1 to centromeric sequences. Previously, we demonstrated that methylated lysine 9 of histone H3 (H3K9me) acts upstream of siRNAs durin...
متن کاملcis-Acting DNA from Fission Yeast Centromeres Mediates Histone H3 Methylation and Recruitment of Silencing Factors and Cohesin to an Ectopic Site
BACKGROUND Metazoan centromeres are generally composed of large repetitive DNA structures packaged in heterochromatin. Similarly, fission yeast centromeres contain large inverted repeats and two distinct silenced domains that are both required for centromere function. The central domain is flanked by outer repetitive elements coated in histone H3 methylated on lysine 9 and bound by conserved he...
متن کاملRegulation of transcriptional silencing and chromodomain protein localization at centromeric heterochromatin by histone H3 tyrosine 41 phosphorylation in fission yeast
Heterochromatin silencing is critical for genomic integrity and cell survival. It is orchestrated by chromodomain (CD)-containing proteins that bind to methylated histone H3 lysine 9 (H3K9me), a hallmark of heterochromatin. Here, we show that phosphorylation of tyrosine 41 (H3Y41p)-a novel histone H3 modification-participates in the regulation of heterochromatin in fission yeast. We show that a...
متن کاملRNAi-mediated targeting of heterochromatin by the RITS complex.
RNA interference (RNAi) is a widespread silencing mechanism that acts at both the posttranscriptional and transcriptional levels. Here, we describe the purification of an RNAi effector complex termed RITS (RNA-induced initiation of transcriptional gene silencing) that is required for heterochromatin assembly in fission yeast. The RITS complex contains Ago1 (the fission yeast Argonaute homolog),...
متن کاملSgf73, a subunit of SAGA complex, is required for the assembly of RITS complex in fission yeast
RNA interference (RNAi) is a widespread gene-silencing mechanism and is required for heterochromatin assembly in a variety of organisms. The RNA-induced transcriptional silencing complex (RITS), composed of Ago1, Tas3 and Chp1, is a key component of RNAi machinery in fission yeast that connects short interference RNA (siRNA) and heterochromatin formation. However, the process by which RITS is a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 23 19 شماره
صفحات -
تاریخ انتشار 2004